Analisis Faktor Kriteria Klinis Pasien dalam Tahap Terminal di RS Dr. Moewardi Surakarta Tahun 2018

Resia Perwirani, Hosizah Hosizah

Abstract


Abstract

Dr. Moewardi Surakarta Hospital has program to improve quality of patient services in terminal conditions. Based on observations, NDR (Net Death Rate) of 67.43‰ far exceeds the Ministry of Health's efficient number of <25‰. In accordance with Kepmenkes 812 of 2007 and PAP7, PAP7.1 SNARS standards for terminal services, terminal patients must be assessed to take care patient's needs. Good assessment must be based on clinical sign of terminal patients. The purpose of research to determine the clinical sign of terminal patients. The study was conducted at the Medical Record Unit of Dr. Moewardi Hospital on July - August, 2019. This research is quantitative with a cross-sectional approach. The instrument was a checklist based on CriSTAL theory. Sample was selected 344 medical records by random sampling method, processed by a factor analysis method to confirm the CriSTAL theory with a model construct consisting of five observable variables and five latent variables using SmartPLS 3.0. The results of analysis state that it is necessary to modify the model by eliminating factors that do not meet the requirements. Clinical Criteria of Terminal Patients are formed from 3 latent variables, namely Clinical deterioration criteria, Findings of Physical Weakness, and Abnormal ECGs, and 34 observable variables namely patient admission via IGD, Behavioral alteration / disability, history of hospitalization and history of ICU.

Keywords: factor analysis, clinical sign of terminal stage patients, CriSTAL

 

Abstrak

RS Dr. Moewardi Surakarta mempunyai program kerja meningkatkan kualitas pelayanan pasien dalam kondisi terminal. Berdasarkan hasil observasi, angka NDR (Net Death Rate) sebesar 67,43‰ jauh melampaui angka efisien Kementerian Kesehatan sebesar <25‰. Sesuai Kepmenkes 812 tahun 2007 dan Standar PAP7, PAP7.1 dalam SNARS tentang pelayanan dalam tahap terminal, pasien dalam kondisi terminal wajib dilakukan asesmen yang memperhatikan kebutuhan pasien. Assesment yang baik wajib didasarkan pada kriteria klinis pasien tahap terminal. Tujuan penelitian ini adalah untuk mengetahui kriteria klinis pasien dalam tahap terminal di RS Dr. Moewardi Surakarta tahun 2018. Penelitian dilaksanakan di unit Rekam Medis RS Dr Moewardi Surakarta bulan Juli – Agustus 2019. Jenis penelitian kuantitatif dengan pendekatan cross sectional. Instrumen penelitian berupa checklist yang dibuat berdasarkan teori CriSTAL. Sampel 344 rekam medis diambil secara acak, data diolah dengan metode analisis faktor untuk mengkonfirmasi teori CriSTAL dengan konstruk model terdiri dari lima variabel observable dan lima variabel laten menggunakan SmartPLS 3.0. Hasil analisis faktor menyatakan perlu modifikasi model dengan mengeliminasi faktor yang tidak memenuhi persyaratan. Kriteria Klinis Pasien Terminal terbentuk dari tiga variabel laten yaitu Kriteria perburukan klinis, Temuan Kelemahan Fisik, dan Abnormal EKG, serta 34 variabel observable yaitu cara masuk pasien melalui IGD, Behavioral alteration/disability, riwayat rawat inap dan riwayat ICU.

Kata Kunci : analisis faktor, kriteria klinis pasien terminal, CriSTAL


Full Text:

PDF

References


Daftar Pustaka

BAPPENAS. Proyeksi Penduduk Indonesia Indonesia Population Projection. 2013. 978–979 p.

BPS. Katalog Publikasi BPS 2018. 2018.

Kementerian Kesehatan RI. Rencana Strategis Kementerian Kesehatan 2015-2019. 2015;

UK R. The Gold Standards Framework Proactive Identification Guidance ( PIG ). 2016;

Cardona-morrell M, Hillman K. Development of a tool for defining and identifying the dying patient in hospital : Criteria for Screening and Triaging to Appropriate aLternative care ( CriSTAL ). 2015;1–13.

Goldhill DR, McNarry AF. Physiological abnormalities in early warning scores are related to mortality in adult inpatients. Br J Anaesth. 2004 Jun;92(6):882–4.

DeVita MA, Smith GB, Adam SK, Adams-Pizarro I, Buist M, Bellomo R, et al. “Identifying the hospitalised patient in crisis”--a consensus conference on the afferent limb of rapid response systems. Resuscitation. 2010 Apr;81(4):375–82.

Padjen I, Cerovec M, Erceg M, Mayer M, Stevanović R, Anić B. Disease characteristics and causes of early and late death in a group of Croatian patients with systemic lupus erythematosus deceased over a 10-year period. Croat Med J. 2018 Feb;59(1):3–12.

van Walraven C, Austin PC, Jennings A, Quan H, Forster AJ. A modification of the Elixhauser comorbidity measures into a point system for hospital death using administrative data. Med Care. 2009 Jun;47(6):626–33.

Vigano A, Dorgan M, Buckingham J, Bruera E, Suarez-Almazor ME. Survival prediction in terminal cancer patients: a systematic review of the medical literature. Palliat Med. 2000 Sep;14(5):363–74.

Saliba D, Elliott M, Rubenstein LZ, Solomon DH, Young RT, Kamberg CJ, et al. The Vulnerable Elders Survey: a tool for identifying vulnerable older people in the community. J Am Geriatr Soc. 2001 Dec;49(12):1691–9.

Kellett J, Deane B. The Simple Clinical Score predicts mortality for 30 days after admission to an acute medical unit. QJM. 2006 Nov;99(11):771–81.

Yourman LC, Lee SJ, Schonberg MA, Widera EW, Smith AK. Prognostic indices for older adults: a systematic review. JAMA. 2012 Jan;307(2):182–92.

Carlson SA, Adams EK, Yang Z FJ. No Title. Percent Deaths Assoc With Ina Phys Act United States Prev Chronic Dis 2018;15170354 DOI http//dx.doi.org/105888/pcd18170354.

Copeland GP, Jones D, Walters M. POSSUM: a scoring system for surgical audit. Br J Surg. 1991 Mar;78(3):355–60.

Levine SK, Sachs GA, Jin L, Meltzer D. A prognostic model for 1-year mortality in older adults after hospital discharge. Am J Med. 2007 May;120(5):455–60.

Rosenwax LK, McNamara BA, Murray K, McCabe RJ, Aoun SM, Currow DC. Hospital and emergency department use in the last year of life: a baseline for future modifications to end-of-life care. Med J Aust. 2011 Jun;194(11):570–3.

Kramer AA, Higgins TL, Zimmerman JE. Intensive care unit readmissions in U.S. hospitals: patient characteristics, risk factors, and outcomes. Crit Care Med. 2012 Jan;40(1):3–10.

Cardona M, Lewis ET, Kristensen MR, Skjøt-Arkil H, Ekmann AA, Nygaard HH, et al. Predictive validity of the CriSTAL tool for short-term mortality in older people presenting at Emergency Departments: a prospective study. Eur Geriatr Med. 2018;9(6):891–901.




DOI: https://doi.org/10.47007/inohim.v7i2.195

Refbacks

  • There are currently no refbacks.


Lembaga Penerbitan Universitas Esa Unggul

Jl Arjuna Utara No 9. Tol Tomang, Kebon Jeruk, Jakarta. 11510

Email : inohim.ueu@esaunggul.ac.id

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

View My Stats