Analisis Sentimen Pro dan Kontra Masyarakat Indonesia tentang Vaksin COVID-19 pada Media Sosial Twitter
Abstract
Abstract
In order to accelerate the handling of the spread of COVID-19 in Indonesia, the Government of the Republic of Indonesia has issued a discourse on vaccination for the Indonesian people at the end of 2020. Although the government has not officially released the schedule or procedure for the vaccinations, the discourse is considered controversial so that it has invited many groups of people to give their opinions in various media. This opinion must be considered as material for evaluation so that the vaccination discourse that will be carried out can run well. By utilizing data from social media twitter, this study aims to analyze the public's response to the vaccination discourse by classifying these responses into positive and negative responses. Furthermore, there will also be grouping of public opinion using the Latent Dirichlet Allocation (LDA) method to find out what topics of conversation are often discussed by the community regarding the vaccination discourse. The results of the analysis show that the public gives more positive responses to the discourse (30%) than the negative responses (26%). The words with the most frequent appearances also indicate that there are more words with a positive sentiment than the words with a negative sentiment. The LDA model that was built can also capture the topics discussed by the community regarding the vaccination discourse, such as public talks about vaccine controversies which are considered hasty, halal certification of vaccines and public doubts about the quality of the vaccine to be used.
Keyword: COVID-19, Latent Dirichlet Allocation (LDA), sentiment analysis, twitter, vaccine
Abstrak
Dalam rangka melakukan percepatan penanganan penyebaran COVID-19 di Indonesia, Pemerintah Republik Indonesia telah mengeluarkan wacana vaksinasi untuk masyarakat Indonesia pada akhir tahun 2020 mendatang. Meskipun pemerintah belum secara resmi merilis jadwal maupun prosedur vaksinasi yang akan dilakukan, wacana tersebut dinilai kontroversial sehingga mengundang banyak kalangan untuk memberikan pendapatnya di berbagai media. Pendapat tersebut haruslah dipertimbangkan sebagai bahan evaluasi sehingga rencana vaksinasi yang akan dilakukan dapat berjalan dengan baik. Dengan memanfaatkan data dari media sosial twitter, penelitian ini bertujuan untuk menganalisis respon masyarakat terhadap wacana vaksinasi dengan cara mengklasifikasikan respon tersebut ke dalam respon positif dan negatif. Selanjutnya juga akan dilakukan pengelompokkan opini masyarakat menggunakan metode Latent Dirichlet Allocation (LDA) untuk mengetahui topik pembicaraan yang sering dibahas oleh masyarakat terkait dengan wacana vaksinasi tersebut. Hasil analisis menunjukkan bahwa masyarakat lebih banyak memberikan respon positif terhadap wacana tersebut (30%) dibandingkan dengan respon negatifnya (26%). Kata-kata bersentimen yang paling sering muncul juga mengindikasikan lebih banyak kata yang bersentimen positif dibandingkan dengan kata yang bersentimen negatif. Model LDA yang dibangun juga dapat menangkap topik yang dibicarakan masyarakat terkait wacana vaksinasi tersebut seperti pembicaraan masyarakat mengenai kontroversi vaksin yang dinilai terburu-buru, sertifikasi halal vaksin dan keraguan masyarakat terhadap kualitas vaksin yang akan digunakan.
Kata Kunci: COVID-19, vaksin, analisis sentimen, Latent Dirichlet Allocation, twitter
Full Text:
PDFReferences
WHO. Virtual press conference on COVID-19 – 11 March 2020. 2020.
WHO. Weekly Operational Update on COVID-19. 2020.
Nuraini R. Kasus Covid-19 Pertama, Masyarakat Jangan Panik _ Indonesia. Indonesia.go.id [Internet]. 2020; Available from: https://indonesia.go.id/narasi/indonesia-dalam-angka/ekonomi/kasus-covid-19-pertama-masyarakat-jangan-panik
Maharani T. UPDATE 26 Oktober: Tambah 112, Pasien Covid-19 Meninggal Jadi 13. kompas.com [Internet]. 2020; Available from: https://nasional.kompas.com/read/2020/10/26/15485201/update-26-oktober-tambah-112-pasien-covid-19-meninggal-jadi-13411
Liu C, Zhou Q, Li Y, Garner L V, Watkins SP, Carter LJ, et al. Research and Development on Therapeutic Agents and Vaccines for COVID-19 and Related Human Coronavirus Diseases. 2020;
Sari IP, Sriwidodo. Perkembangan Teknologi Terkini dalam Mempercepat Produksi Vaksin Covid-19. 2020;5(5):204–17.
PERATURAN PRESIDEN. REPUBLIK INDONESIA; 2020 p. 1–13.
Hakim RN. Menlu Retno dan Menteri BUMN Akan ke Inggris dan Swiss Amankan Stok Vaksin Covid-19. kompas.com [Internet]. 2020; Available from: https://nasional.kompas.com/read/2020/10/12/09 074911/menlu-retno-dan-menteri-bumn-akan-ke-inggris-dan-swiss-amankan-stok-vaksin
Hastuti RK. Mohon Doanya! Bulan Depan Indonesia Mulai Vaksinasi Covid-19. cnbcindonesia.com [Internet]. 2020; Available from: https://www.cnbcindonesia.com/news/20201017154414-4-195104/mohon-doanya-bulan-depan-indonesia-mulai-vaksinasi-covid-19
Anwar F. Program Vaksin COVID-19 Mulai November, Apa Itu Emergency Use Authorization? detik.com [Internet]. 2020; Available from: https://health.detik.com/berita-detikhealth/d-5210577/program-vaksin-covid-19-mulai-november-apa-itu-emergency-use-authorization
Artanti A ayu. Kabar Gembira, Pemerintah Mulai Program Vaksin November 2020 - Medcom. medcom.id [Internet]. 2020; Available from: https://www.medcom.id/ekonomi/bisnis/ObzZY7db-kabar-gembira-pemerintah-mulai-program-vaksin-november-2020
SOCIAL WA. DIGITAL. 2019.
Collins C, Hasan S, Ukkusuri S V. A novel transit rider satisfaction metric: Rider sentiments measured from online social media data. J Public Transp. 2013;16(2):21–45.
Basu R, Khatua A, Jana A, Ghosh S. Harnessing Twitter Data for Analyzing Public Reactions to Transportation Policies : Evidences from the Odd-Even Policy in Delhi , India. 2017;(November). Available from: https://www.researchgate.net/publication/321997978_Harnessing_Twitter_Data_for_Analyzing_Public_Reactions_to_Transportation_Policies_Evidences_from_the_Odd-Even_Policy_in_Delhi_India
Luong TTB, Houston D. Public opinions of light rail service in Los Angeles , an analysis using Twitter data. iConference 2015 Proc. 2015;2–5.
Pratama MO, Satyawan W, Jannati R, Pamungkas B, Raspiani, Syahputra ME, et al. The sentiment analysis of Indonesia commuter line using machine learning based on twitter data. J Phys Conf Ser. 2019;1193(1).
Pramana S, Yuniarto B, Mariyah S, Santoso I, Nooraeni R. Data mining dengan R konsep setara implementasi. Pertama. Bogor: Bogor : IN MEDIA, 2018 © 2018; 2018.
Haddi E, Liu X, Shi Y. The role of text pre-processing in sentiment analysis. Procedia Comput Sci [Internet]. 2013;17:26–32. Available from: http://dx.doi.org/10.1016/j.procs.2013.05.005
Collomb A, Costea C, Joyeux D, Hasan O, Brunie L. A Study and Comparison of Sentiment Analysis Methods for Reputation Evaluation. Rapp Rech. 2014;002.
Ohana B, Tierney B. Sentiment classification of reviews using SentiWordNet. In: 9th International Conference on Information Technology and Telecommunication: Ubiquitous and Green Computing [Internet]. 2009. p. 3–10. Available from: http://www.ittconference.ie/openconf/openconf.php
Wahyudin I, Tosida ET, Andria F. Teori dan Panduan Praktis Data Science dan Big Data [Internet]. Pertama. Lembaga penelitian dan pengabdian masyarakat universitas pakuan. Bogor; 2019. 1–6 p. Available from: https://www.researchgate.net/profile/Yulingga_Hanief/publication/330752923_Cara_Cepat_Kuasai_Massage_Kebugaran_Berbasis_Aplikasi_Android/links/5c529bca458515a4c74c5373/Cara-Cepat-Kuasai-Massage-Kebugaran-Berbasis-Aplikasi-Android.pdf
Blei DM, Ng AY, Jordan MI. Latent Dirichlet Allocation. J Mach Learn Res 3. 2003;3.
Kumar K. Evaluation of Topic Modeling:Topic Coherence [Internet]. datascienceplus.com. 2018. Available from: https://datascienceplus.com/evaluation-of-topic-modeling-topic-coherence/
Kearney MMW. Package ‘ rtweet .’ 2020;
Pramana S, Yordani R, Kurniawan R, Yuniarto B. Dasar-dasar statistika dengan software R : konsep dan aplikasi. Kedua. Bogor: Bogor : In Media, 2017.; 2017.
Team RC. R: A language and environment for statistical computing [Internet]. R Foundation for Statistical Computing, Vienna, Austria. 2017. Available from: https://www.r-project.org/
Salsabila NA, Winatmoko YA, Septiandri AA, Jamal A. Colloquial Indonesian Lexicon. In: International Conference on Asian Language Processing. 2018. p. 236–9.
Tala FZ. A Study of Stemming Effects on Information Retrieval in Bahasa Indonesia. 2003;
Liu B, Hu M, Cheng J. Opinion observer. 2005;342.
Hartanto. TEXT MINING DAN SENTIMEN ANALISIS TWITTER PADA GERAKAN LGBT. Intuisi J Psikol Ilm. 2017;9(1):18–25.
Setyobudi W, Alwi A, Astuti IP. Sentimen Analisis Twitter Terhadap Penyelenggaraan Gojek Traveloka Liga 1 Indonesia. Komputek. 2018;2(1):56.
Purba NS, Nooraeni R. Using LDA for Innovation Topic of Technology : Quantum Dots Patent Analysis. 2020;(January).
DOI: https://doi.org/10.47007/inohim.v8i2.223
Refbacks
- There are currently no refbacks.
Lembaga Penerbitan Universitas Esa Unggul
Jl Arjuna Utara No 9. Tol Tomang, Kebon Jeruk, Jakarta. 11510
Email : inohim.ueu@esaunggul.ac.id
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
View My Stats